Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38400354

RESUMO

Autonomous sleep tracking at home has become inevitable in today's fast-paced world. A crucial aspect of addressing sleep-related issues involves accurately classifying sleep stages. This paper introduces a novel approach PSO-XGBoost, combining particle swarm optimisation (PSO) with extreme gradient boosting (XGBoost) to enhance the XGBoost model's performance. Our model achieves improved overall accuracy and faster convergence by leveraging PSO to fine-tune hyperparameters. Our proposed model utilises features extracted from EEG signals, spanning time, frequency, and time-frequency domains. We employed the Pz-oz signal dataset from the sleep-EDF expanded repository for experimentation. Our model achieves impressive metrics through stratified-K-fold validation on ten selected subjects: 95.4% accuracy, 95.4% F1-score, 95.4% precision, and 94.3% recall. The experiment results demonstrate the effectiveness of our technique, showcasing an average accuracy of 95%, outperforming traditional machine learning classifications. The findings revealed that the feature-shifting approach supplements the classification outcome by 3 to 4 per cent. Moreover, our findings suggest that prefrontal EEG derivations are ideal options and could open up exciting possibilities for using wearable EEG devices in sleep monitoring. The ease of obtaining EEG signals with dry electrodes on the forehead enhances the feasibility of this application. Furthermore, the proposed method demonstrates computational efficiency and holds significant value for real-time sleep classification applications.


Assuntos
Tecnologia Disruptiva , Humanos , Eletroencefalografia/métodos , Fases do Sono , Sono , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...